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SUMMARY

This report expands upon a study conducted by the Flight
Transportation Laboratory of the Massachusetts Institute of Technology
(MIT). The primary objective of the MIT study was to determine the
impact of technology on capacity improvements in the U.S. air
transportation system and, consequently, to assess the areas where NASA's
expertise and technical contributions would be the most beneficial. The
outlook of the study is considered both near- and long-term (5 to 25 years).
This report reinforces and supplements the conclusions reached in the MIT
study, and includes assessments of the state of technology in those areas
found to be critical to relieving congestion in the air transportation system.
Improvements in technology are identified that are likely to increase
capacity and reduce delays if developed and implemented.

INTRODUCTION

In the U.S., passenger transportation has experienced dramatic
changes over the past half century. As the nation was recovering from
World War II, intercity travel was linked across the country by railroad
networks or by buses to points not served by the rail system. During this
same period, cross-country travel by automobile was a challenge and travel
by air was considered luxurious. In more recent years, those same rail and
bus modes of transportation represent a very small and diminishing
fraction of the total means of transportation. They have been replaced by
privately owned automobiles traveling over a congested interstate highway
system and by an ever expanding private and commercial air transportation
network.



From about 1970 through 1990, there has been a boom in air travel
essentially world wide. This has resulted from a combination of events that
include improved personal economic standards, development of larger and
faster aircraft, increased number of large and small airports serving the
nation, and airline deregulation that occurred in 1978. This single mode of
transportation has been responsible for altering intercity travel and
currently represents about one-fifth of all intercity passenger-miles or
about twice that in 1970 (ref. 1).

As we move into the next century, the U.S. will be facing many
challenges in its transportation system. Probably one of the greatest
challenges will be that of the air transportation system (refs. 2 and 3). In
1988, the top 100 U.S. airports accounted for 90 percent of the 459 million
airline passengers who enplaned nationally. In 1998, about 715 million
passengers are forecast to enplane at these same airports or a 56 percent
increase. For the same airports and time period, aircraft operations are
forecast to increase from approximately 25 to 34 million; a growth in
operations of 36 percent. Current forecasts indicate that delays in air
travel will reach staggering proportions (ref. 4) . In 1988, twenty-one
U.S. airports exceed 20,000 hours of annual airline flight delays. By 1988,
the number of airports which could exceed this number of hours is forecast
to reach 41 (ref. 4). These delays have been said to cost the airlines about
$32 million directly per airport and airline passengers $4 to $6 billion
overall (ref. 5). Thus, the principal challenges facing the Federal Aviation
Administration (FAA), as America moves into the next century, have been
defined in their 1990 Strategic Plan (ref. 3) as being: (a) aviation safety
and security; (b) capacity and access; (c) environment; (d) human factors;
(e) internationalization; and (f) management of the agency.

On the plus side of the capacity crisis is that there has been a bonanza
of revenues generated over the past several years by the escalation of
passenger and cargo trade at the nation's commercial airports, which
exceed 500 in number. This economic impact is supported by a study
commissioned by the Partnership for Improved Air Travel (PIAT)
indicating that in 1989, the direct impact of combined airline and airport
operations, aircraft manufacturing, and general aviation was $86.5 billion.
This number does not include $108 billion in indirect economic impacts,
nor $400 billion in "induced" impacts resulting from these activities. In
this same year, aviation's total economic impact on the nation was in excess
of $594 billion or about 5.6 percent of the gross national product (GNP).
An example of the economic impact of several metropolitan airports is
shown in figure 1 (ref. 5). On the other side of the capacity crisis, with
increased growth and revenues, we have a dilemma between economics and



environmental issues that particularly face the airport industry. In
addition, there are other concerns related to the airport industry such as:
acquisition and utilization of trust funds; spending of Airport Improvement
Funds; Passenger Facility Charge; who really controls the airport--airlines
or airport; and privatization of U.S. airports.

Critics have expounded on whether or not increased capacity will be
needed at airports, in the airways, and linking ground transportation
systems (ref. 5). However, the fundamental issue that remains is not the
needs of the air transportation system alone, but what are the required
technologies and infrastructure to serve intercity travel needs into the next
century? Therefore, the present study of long-term airport capacity needs
should be viewed in support of, and in cooperation with, initiatives and
ongoing studies by the Federal Aviation Administration (FAA) and U.S.
Department of Transportation (DOT) (refs. 1-6).

To determine the impact of technology on capacity improvements in
the U.S. air transportation system and, consequently, to assess the areas
where NASA's expertise and technical contributions would be the most
beneficial, NASA funded the Massachusetts Institute of Technology (MIT)
Flight Transportation Laboratory (NASA Langley Grant NAG-1-1149) to
conduct a study focusing on these airspace and airport capacity issues. The
outlook of the study was considered both near- and long-term (5 to 25
years). The MIT study, which is presented in reference 7, identified
aircraft noise as the fundamental hindrance to capacity improvement. A
summary of their major conclusions follows:

1. Community reactions to noise around airports --- is the long term
barrier to increasing the capacity of the nation's air transport system.
More airports or vertiports must be built around major cities to
accommodate the long term growth expected in air transport.

2. There are valuable returns from exploiting existing technology to
reduce current Air Traffic Control (ATC) separation criteria used in
Oceanic and Terminal areas.

3. There is a need to provide evidence of the economic,
environmental, and operational viability of a Civil Tilt Rotor (CTR)
Short Haul Air Transportation System to support decisions:--to
embark on a long-term CTR  development program.



In an effort to acquire an independent assessment of the capacity
problems and identification of possible technical solutions, the study
purposely included interactions with the "users" outside of both agencies as
well as with organizations within. The approach taken by NASA was that
of actively working with the MIT Flight Transportation Laboratory during
the interactions with these organizations. During the period of this study a
large amount of material was generated and collected pertaining to the
study conclusions, especially in the areas of aircraft noise and aircraft
separation. This information includes details on the current state-of-the-art
and trends for the technologies under investigation. Table 1 indicates the
names of organizations with which interactions were held over a period of
one and one-half years. They include aircraft and engine companies,
airlines, port authorities, national and international organizations or
associations, and government organizations.

This report expands upon and supplements the conclusions reached in
the MIT study and includes assessments of the state of technology in those
areas found to be critical to relieving congestion in the air transportation
system and identifies improvements in technology that would increase
capacity and reduce delays.



ACRONYMS

AAS Advanced Automation System
ACCI Aircraft Association Council International
ADS Automatic Dependent Surveillance

ALPA Airline Pilots Association

AOPA Aircraft Owners and Pilots Association
ASTA Airport Surface Traffic Automation
ATA Air Transport Association

ATC Air Traffic Control

ATMS Advanced Traffic Management System
ATOMS  Air Traffic Operations Management Systems

CARD Civil Aviation Research and Development

CNS Communications, Navigation and Surveillance
CTAS Central Tracon Automation System

CTR Civil Tilt Rotor

db Decibel

DNL Day-Night Sound Level

EIS Environmental Impact Statement

EPA Environmental Protection Agency

EPNL Effective Perceived Noise Level

EVS Enhanced Vision System



FAA
FMS
FY
GNP
GPS
GNSS
HBPR

HSCT

IAT
ICAO
IFR
ILS

IRU

NAS
NASA
NRC
nmi
ODAPS
PIAT

RPM

Federal Aviation Administration

Flight Management System

Fiscal Year (October 1 through September 30)
Gross National Product

Global Positioning System

Global Navigation Satellite System

High By-Pass Ratio

High Speed Civil Transport

Heads Up Display

Interarrival Time

International Civil Aviation Organization
Instrument Flight Rule

Instrument Landing System

Internal Reference Unit

Microwave Landing System

National Airspace System

National Aeronautics and Space Administration
National Research Council

Nautical Miles

Oceanic Display and Planning System
Partnership for Improved Air Travel

Revenue Passenger Miles



ROT Runway Occupancy Time

RSU Runway Sequencing Unit
SDRS Standardized Delay Reporting System
SLST Sea Level Static Thrust

TCAS Traffic Alert and Collision Avoidance System

TMS Traffic Management System
TRB Transportation Research Board
VFR Visual Flight Rules

SYSTEM CAPACITY AND TECHNOLOGY

During the interactions and discussions held with senior staff of the
organizations listed in Table 1, emphasis was placed on their opinion or
concerns regarding capacity and demand, and what should be done to
address improvements required to reduce congestion and delays through
technology. In general, comments ranged from "not a problem" to
"impossible" and from "pour more concrete" to "improve utilization and
techniques." However, by a large majority, it was concluded that air
transportation capacity was an overwhelming problem world wide. The
major areas requiring improvements through technology that were
repeatedly heard in the interviews are as follows:

Aircraft noise reduction

Heads up Display (HUD) and enhanced vision systems
Separation between aircraft

Global Positioning System (GPS)

Runway Occupancy Time (ROT)

Traffic Alert and Collision Avoidance System (TCAS)
Situation display in cockpit

Wake vortex

Taxiways

. Runway conditions

. Systems integration

. Flight Management Systems (FMS)
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13. Weather forecasting and readout

14. Air Traffic Control (ATC) automation

15. Departure efficiency

16. Route structure

17. Large subsonic aircraft

18. Center Tracon Automation System (CTAS)
19. Microwave Landing Systems (MLS)

20. Safety and blunder

After consideration of the above list of individual capacity
improvements along with a survey of the literature, the question arises as
to whether we can quantify the individual effects of technology towards
improvements in capacity. Obviously, a total system integration of the
individually recommended technologies is required for the final assessment
of capacity improvement. The economics of developing new technology
and implementation of improvements will certainly have to be considered
in the overall solution process to improve capacity.

FACTORS AFFECTING CAPACITY AND DELAY

A major concern to both airport operators and users is delay (refs.
8 and 9). At busy airports, delays in flight arrivals and departures begin to
accumulate during the day due to the queue of aircraft awaiting their turn
for takeoff, landing, or use of taxiways and gates at terminal buildings.
These delays translate into increased operating costs for the airport users
and wasted time for passengers. The cause for delay is often referred to as
a "lack of capacity." In general terms, this means that a given airport does
not have facilities (runways, taxiways, or gates) in sufficient numbers to
accommodate all those who want to use the airport at peak periods of
demand.

Capacity generally refers to the ability of an airport to handle a
given volume of traffic (demand), and may vary with time depending on
physical and operational factors that include airfield and airspace
geometry, air traffic control rules and procedures, weather and traffic mix
(refs. 4, 9, and 10). For a given airport configuration, there is a limit that
cannot be exceeded without incurring an operational penalty. The
successful management of an airport involves devising ways to compensate
for those factors that, collectively, interact to decrease capacity or induce
delay.



Delays occur on the airfield whenever two or more aircraft seek to
use a runway, taxiway, gate or any other airside facility at the same time.
With increased traffic density and request for service, the average delay
increases exponentially as demand approaches airport capacity. When
demand exceeds capacity, there is an accumulation of aircraft awaiting
service that is directly proportional to the excess of demand over capacity.

The FAA Standardized Delay Reporting Systems (SDRS) is reported
by three airlines and accounts for any delay in excess of 15 minutes as
opposed to major delay as measured by the Air Traffic Operations
Management System (ATOMS) (ref. 4). The SDRS defines delay relative
to the following phases of flight: Taxi-in; Taxi-out; Airborne: and
Gatehold. The FAA reported (ref. 4) that in 1988, nearly 80 percent of all
flights were delayed 1 to 14 minutes in taxi-in or taxi-out. More delay
occurred during the taxi-out phase than any other phase. Only 5 percent of
flights were due to gatehold delay

It was reported (ref. 4) that there were 25 million operations in 1988
at the nations top 100 airports. By considering only an average airborne
phase delay of 4.4 minutes per aircraft, there was a total of over .9
million hours of delay, which, at an estimated $1600 per hour, cost the
airlines $1.4 billion. Figure 2 shows the estimated annual cost of delay to
air carriers that was determined by multiplying the total operations and
delay phase results (ref. 4) taken at the nations top 100 airports by the
direct operating cost (DOC) per hour to the airlines. In a different view,
20,000 hours of flight delay translates into over $32 million annually at the
cost of $1600 per aircraft per hour of airport delay.

The indicated trends (fig. 2) and forecast (ref. 4) suggest that, in the
absence of capacity improvements, delay in the system will grow and the
cost to airlines may double from about $5 to $10 billion between 1990 and
2000.

In the present study it was determined that today's capacity problems
relate directly to all the previously mentioned physical and operational
factors. These capacity issues will be briefly discussed.

Weather Conditions

For a given airport, the capacity is usually the highest in clear
weather and maximum visibility. The existence of fog, low ceilings,
precipitation, strong winds or wind shifts, and accumulation of ice and
SnOW on runways can cause alternate operational changes to meet safety and



ATC procedures and severely reduce capacity. Even at large airports, with
multiple runways and patterns at their disposal, some of the configurations
may have a substantially lower capacity than the others. For most airports,
it is the combined effect of weather, runway configuration, and ATC rules
and procedures that result in the most severe loss of capacity or longest
delay times. The U.S. airlines rejected the idea of limiting schedules to bad
weather conditions. Their schedules are generated based on good weather
conditions, which seems to occur most of the time, even though the
primary cause of delay is weather.

The influence of weather declined from 1988 to 1989 (fig. 3), but
was attributed as being the primary cause of 57 percent of the nations
airport operations delay by 15 minutes or more on 391,000 flights in 1989
(ref. 4). Terminal air traffic volume increased and accounted for a record
29 percent of delays, while air traffic control (ATC) center volume was 8
percent. Runway construction was the cause of 3 percent of delay,
National Airspace System (NAS) equipment interruptions for 2 percent,
and 1 percent for other causes.

Airport Utilization /Scheduling

The FAA (ref. 4) has identified 27 major air traffic hubs in the U.S.
as being the busiest for national and international markets, as shown in
figure 4. There are 36 airports that handle 360 million passengers
annually, which represents about 73 percent of the total enplanements in
1989. Origin of the traffic at each of the hubs shown on figure 4 is
illustrated in the enclosed box at the lower left hand corner. A close
observation of the individual hubs will indicate that, on the average, nearly
45 percent of all traffic is a result of transfers mainly being fed into or out
of the hub by commuter traffic over short distances. The main point to be
made is that the current lack of capacity in the U.S. exists at these major
hubs.

A major cause of delay is flight scheduling. Certain arrivals and
departure times are preferred by travelers, and are subsequently scheduled
by the airlines. This peaking of demand, however, produces system
overloads, traffic queues, et cetera, that lead to delays at originating and
connecting points within the airport and airspace network. Traffic peaking
has increased markedly since airline deregulation. For a given airport,
there exists peak hourly demand conditions for services. Some airports are
always near peak conditions and/or constrained by the number of available
slots (for example, New York's La Guardia; Washington's National,
Chicago's O'Hare; and London's Gatwick). Figure 5 shows an example of
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the passenger aircraft movements with time of day for New York's

J. F. Kennedy Airport. For the particular day of the week shown, the net
peak (shown as the number of aircraft on the ground) is seen to decrease
from a level of about 50 at around 8 o'clock in the morning to essentially
zero at noon, then rapidly peak at about 110 movements around 5 o'clock
in the evening before decreasing again. Deliberate "peaking" of daily
schedules, to create "connecting complexities" through regional hubs, have
been designed by the airlines to maximize utilization of their airplanes
under good weather conditions for both U. S. and international flights.
Airport hourly capacity will also vary strongly with weather. Thus, when
the weather deteriorates from conditions of operation under Visual Flight
Rules (VFR) to those of Instrument Flight Rules (IFR) and near peak
demand conditions, the number of arrivals and departures at various
airports fall below that scheduled.

Airports and Runways

A special working group was formed under the TRB/NRC airport
network study panel (ref. 6) to review and select existing economic models,
demographic projections, and aviation forecasting techniques in order to
obtain an approximation of future demand for air travel. Results from this
study were reported in 1988 and (Appendix A, of ref. 6) are shown in
figure 6 for a range of estimates under various input assumptions about
Gross National Product (GNP), air fares, population growth, economic
conditions, and travel propensity. The range of air travel demand under
various scenarios is seen to reflect uncertainties inherent in extended
projections from 1990 to 2050. For example, the revenue passenger miles
(RPM) is forecast to double in the U. S. by the next decade from about 300
to over 600 billion for an assumed low GNP and high fares while for this
same period it is projected to increase by a factor of about 5.5.

During fiscal year 1989, the number of airline flight delays in excess
of 15 minutes was reported (ref. 4) to have increased at 12 of 22 major
airports compared to the previous year. The percentage of flights delayed
at these airports ranged from 0.1 to 10.3 percent. In 1988, 21 airports
each exceeded 20,000 hours of airline flight delays. With no
improvements in airport and airspace capacity (ref. 4) between 1989 and
1998, 41 airports in the U.S. are forecast each to exceed 20,000 hours of
flight delays, 15 airports will experience 50,000 to 100,000 hours of delay,
and four airports are forecast to exceed 100,000 hours of delay (fig. 7).

New Hubs: most of the traffic in the airport network is concentrated at
relatively few airports where airline routes converge. As a result, the lack
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of capacity at these hubs increases delay. A possible solution would be to
establish the future new hubs at existing conveniently located points. The
FAA has identified a number of airports with underused capacity that could
relieve a large number of overly congested airports now used as major
airline hubs (ref. 4) and are shown in figure 8.

Airport Slots: in 1969, the FAA imposed a high-density regulation making
Kennedy, La Guardia, Washington National, and O'Hare airports subject to
slot allocation under VFR conditions. This regulation allows airlines to
profit from sales of slots (utilized or not) originally allocated to them
through scheduling committees but handed over to the airlines in 1986
when the buy/sell rule took place. Most new entrant airlines must pay
exorbitant prices for available slots and oppose the high-density rule, and
would welcome its elimination.

New Airports and Runways: for years, industry experts have claimed that
the lack of airport expansion has been the main cause of our nations
capacity problems. The FAA's testimony before the House Aviation
Subcommittee in 1990, indicated that the major problem the nation faces in
aviation today is congestion and delay at our airports that is forecast to
grow, placing added strain on the air transportation system and cost to
operators and travelers. While airport capacity is difficult to determine, it
can be rationalized by comparing throughput (the number of operations, or
arrivals and departures actually conducted) with demand, the number of
aircraft seeking service, per day. Figure 9 shows the operations activity in
1988 for various types of aircraft and projected excess capacity
requirements for the top 50 U.S. airports by the year 2000 (ref. 11). The
results indicate that over this period of time, the total number of operations
per day by all types of aircraft is expected to increase by 34 percent and
the required excess capacity is about 22 percent.

At many of the existing congested airports (fig. 7), increases in
capacity could be accomplished by the addition of some combination of
new and extended runways or taxiways and associated changes in air traffic
control procedures. Such additions and changes, which are highly site
specific, would increase the hourly aircraft service rate both under VFR
and IFR conditions. The FAA (ref. 4) has identified 400 projects and
proposed new and extended runways for 66 of the top 100 airports in the
U.S., for capacity increases by the year 2010. The total anticipated cost of
completing only the new runways and extensions is about $6.5 billion by
the year 2010.
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Construction of new airports and runways are the most direct and
short term actions that can be taken to improve airport capacity (refs. 1
and 4), especially in areas where current and future centers of business,
commerce, and tourism will be important. Figure 10 lists the major
airport expansion programs around the world. Studies (ref. 1) indicate
that building 10 major new airports in the U.S., in densely populated and
highly developed urban areas, will provide a capacity increase of 9 million
operations annually by the year 2000 or the equivalent of 30 percent of all
commercial air carrier movements in the country. Large capacity
increases, both under VFR and IFR, can come from the addition of new
runways properly oriented to allow independent arrival or departure of
aircraft. The resulting increase in capacity has been reported (ref. 4) to
range from 33 to 100 percent (depending on whether the baseline is a
single, dual, or triple runway configuration).

Enhanced IFR Operations: if it were possible to achieve the equivalent of
VFR operational rate except during severe weather conditions, it has been
reported (ref. 1) that the hourly IRF rate at a typical hub airport (fig. 11)
might be increased by 40 to 60 percent. This area will require new
technology and will be most effective if implemented on a nation-wide
basis.

Civil Tilt Rotor (CTR): construct new tilt rotor air transport system.
Studies (ref. 12) have shown that about 40 percent of all commercial flights
arriving at the 10 busiest airports are from distances less than 300 miles.
These flights are mostly regional carriers, with passengers transferring to
long-haul aircraft, and occupy the same gates and runways. While the CTR
system could free up gates and runways by building vertiports that may
produce a 10 percent capacity increase (ref. 13), there remains economic
and technical issues to be resolved. The technical issues include community
noise, human factor-based pilot controls, airspace navigation, vehicle
drag/download, and rotors.

MAJOR CAPACITY CONSTRAINTS

In analyzing the overall findings of the MIT study of reference 7,
there were two major themes that continued to emerge as constraints to the
many issues and challenges facing airports in the U.S. National Airspace
System:



First, there exists severe local political opposition to airport
expansion due to noise from subsonic jet transport aircraft takeoff and
landings. Noise is considered the Achilles heel of the airport industry and
aviation system. The airport operator must find ways to reduce aircraft
noise in response to local pressure. Noise not only affects millions of
people, but costs airports far more than communities, travelers, and even
the airport operators realize. FAA estimates "noise mitigation" will cost
$1 billion per year for the next 5 years and localities will spend $20 billion
to acquire land for noise buffer zones and airline purchases of new or
hushkit aircraft (ref. 5).

Noise issues heavily impact air traffic control procedures. The
airport must make a tradeoff between usable capacity and noise control, by
restrictions on flight paths over sensitive areas during certain hours, with
usual results being some loss of capacity or increase of delay. "We cannot
hope to increase capacity unless we first tackle the noise issue," said
Gary Letellier, Port of Seattle Deputy Director (ref. 5).

Secondly, operational procedures and air traffic control intended
primarily for assuring safety of airspace and terminal traffic. These rules
and procedures are basic determinants of capacity and delay by governing
minimum allowable separations, runway occupancy, spacing of arrivals and
departures, use of parallel and converging runways, and noise abatement
and control procedures.

AIRCRAFT NOISE

Aviation is concerned with vehicles which, for the majority of their
travel time, are well separated from local communities by vertical distances
in terms of miles. Over most of their flight paths, they are the cleanest and
quietest form of transportation. However, the aircraft noise problem is
confined to regions around the terminal area. When jet aircraft first
started flying out of major airports in the late 1950's, local residents
expressed outrage. Since then, there has been those who have learned to
tolerate the noise, but there remains sufficient and influential numbers who
continue opposition. In the late 1960's, a Civil Aviation Research and
Development (CARD) study (ref. 14) found aircraft noise in the vicinity of
airports to be a major deterrent to the development of airports and growth
of the civil aviation system in the U.S.. Today, noise is still a major
impediment to airport expansion. Worldwide, there exists severe political
and legal opposition to airports expansion due to jet transport noise. Thus,
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the following discussions will attempt to address noise impact on the
community and industry, forecast, and research needs.

Community Reaction to Noise: Many of the effects of noise on individuals
are highly dependent on particular situations and cannot be generalized.
However, past studies (refs. 15-17) have revealed that there are three
primary direct effects: activity interference, annoyance, and hearing loss.
Their statistical relationships to noise provide a quantitative basis for
evaluation and control and are summarized by the Environmental
Protection Agency (EPA) (ref. 15) and then later extended by the National
Research Council (ref. 16). The two effects applicable to airport noise
exposure are related to social activity interference (sound level and speech
communications) and annoyance (extent of complaints and reactions to
intruding noise).

The results of social surveys in several countries (refs. 18 and 19)
have been combined to give a general relationship between long-term
average outdoor day-night sound level (DNL) environmental noise (urban
traffic, highways, railroads, and airports) and residential annoyance.
Apparently, previous studies did not include sufficient input on dynamic
changes in noise exposure, which can cause much stronger community
reaction than expected. Figure 12 shows the expected annoyance and
average community reactions to aircraft noise exposure (ref. 15). The
results indicate that the degree of complaints vary between "none" and
"vigorous" noise. The nonreaction response in the figure corresponds to a
normalized outdoor DNL that has an average value of 55 db (not a
regulation) which is 5 db below the 60 db level characterizing noise in a
residential urban community (ref. 15), and is the reference for
normalizing. A DNL of 65 db has been recommended by the EPA (ref.
15) as the maximum environmental noise level not to be a threat to public
health and welfare, and accepted by HUD (ref. 20) and the FAA (ref. 21)
to be normally compatible with all land uses including residential housing
(Part 150 of the Federal Air Regulations).

There have been several studies in the past directed toward
estimating the impact of noise from airport operations on neighboring
communities (see, for example, refs. 22 and 23). The previous studies
have indicated a rapid increase in the percentage of the nation's total
population exposed to DNL values greater than 65 db, between 1960 and
1975, based on the national fleet (Stage 1 aircraft). Figure 13 (from ref.
24) is in agreement with the previous studies in that population exposure
began to rapidly decrease after about 1975 to the present, as wide-body jets
replaced narrow-body four engine jets (Stage 2 aircraft), while
enplanements increased.



It should be noted (fig. 13) that the perceived decrease in exposed
population to noise is expected to continue through the year 2000 when a
majority of the older Stage 2 aircraft will be either retrofitted or retired to
meet Stage 3 compliance. Even with the FAA's Airport Noise and
Capacity Act of 1990 in effect (ref. 25), it is projected that about 0.5
million people will remain exposed to noise levels in excess of 65 db.

The regulatory guidelines for noise abatement flight procedures may
be found in the FAA's Advisory Circular 91-53. While noise abatement
procedures are being used as a means of complying with local airport noise
limits, the impact of overall noise on the economics of reduced aircraft
operations and derated-thrust takeoff procedures have not been reported.
There are many options for aircraft noise abatement around airports to
mediate the many complaints from local communities. In the late 1990's,
for example, the Aircraft Owners and Pilots Association (AOPA)
disseminated guidelines for GA pilots to reduce noise near airports. The
practices involved flying at reduced power settings when below 2,000 feet
altitude and on approach to the airport. It is felt by some, that neither the
FAA's noise abatement options nor the AOPA-recommended flight
procedures are widely used at airports. Further, decisions to change
routing of flight paths over one community to another does not address the
cause of aircraft noise. The Aircraft Noise Abatement Policy Act of 1991
(bill--H.R. 3639) calls for an Environmental Impact Statement (EIS) to be
prepared when flight path changes are made below 1,500 feet (ref. 26).
Figure 14 shows that most noise complaints are directed at flights within a
30-mile radius around the airport, which is the zone where most aircraft
average 15,000 feet. FAA's current policy is to review only EIS's for
route changes and operations below 3,000 feet.

The FAA (refs. 4 and 27) has indicated that there are more than 60
proposals in various stages of planning to either build or extend runways at
major airports to increase capacity in the national aviation system.
However, nearly all the proposals are being challenged by local residents
claiming potential of injury due to increased noise levels. There are
around 400 noise sensitive airports in the U.S. About 33 of these are
considered noise impacted airports and are shown in figure 15. Nearly all
of the airports shown are in densely populated areas. As indicated in the
figure, the Air Transport Association (ATA) has estimated that there are
about one million people across the nation that are affected by noise and
250 million suffering because of it. Figure 16 shows the major U.S.
airports with night curfews enforced, based on individually applied noise
restrictions, reflecting the perceived sensitivity of the local community to
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its noise environment. A growing number of airports are applying
restrictions in the form of noise limits for takeoff and approach that are
more stringent than FAA certification regulations.

Noise Policy: A new international noise policy toward operating
restrictions on Stage 2 subsonic aircraft will require about half of the
world's commercial aircraft now flying to be modified or phased out by
the end of the year 2002 (ref. 28). Final noise rules issued by the FAA in
September 1991 (fig. 17), indicate airline compliance requirements that
differ from the International Civil Aviation Organization (ICAQO) as
reported in references 28 and 29. Figure 18 shows the maximum
allowable noise level variation with takeoff weight under the FAA's FAR
36 Stage 3 compliance compared with noise data taken from reference 30
for various aircraft. The FAA rules (fig. 17) retain a 9-year deadline for
eliminating Stage 2 aircraft, but permit airlines to use their older, noisier
jets longer than planned depending on choice of a "phase-in" or phase-out"
option. The ICAO noise policy attempts to compromise between airlines
with large fleets of Chapter Three aircraft (designed after October 1977)
and those with mainly Chapter Two aircraft. Community reaction to
existing or anticipated noise exposure has resulted in local U.S. airport
authorities developing their own use of nonstandard noise abatement
takeoff procedures, airport access restrictions or night time operational
limitations, and curfews that limit the choice of aircraft used by airlines
(fig. 19). There is increasing concern on a worldwide basis that the U.S.
practices dual-certification standards for aging aircraft to meet Stage 2 and
3 noise levels that allows operators to benefit from landing fee incentives
or avoid airport-imposed curfews (ref. 31). As a result, German airports
are planning to clamp down on airlines that declare Stage 3 noise
compliance but actually generate Stage 2 noise levels.

Studies have shown (fig. 20) that about 45 percent of the total U.S.
transport fleet (about $12 billion market value) consists of the older,
noisier Stage 2 narrow-body aircraft (refs. 29, 30, and 32-34). Stage 2
aircraft also account for about half of the world's fleet (about $30 billion
market value) with a declining resale value. Industry-wide cost estimates
(between about $1 billion to $100 billion) for implementing the noise rules
(fig. 21) vary widely depending on whether carriers fit hushkits to aircraft,
re-engine them, or replace them with more expensive Stage 3 transports
(refs. 32-34).

Noise Climate Projection: In 1988, about 25 million aircraft operations
occurred at the nation's top 100 airports (ref. 4), accounting for 90 percent
of all (459 million) airline passengers enplaned. By the turn of the
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century, operations are forecast to grow to 34 million at these same
airports. Figure 22 shows the history and forecast (ref. 35) of the U.S.
commercial transport aircraft requirement (ref. 27) to meet such a
demand. The number of aircraft in the regional and major air carrier fleet
are forecast to significantly increase over the next 10 years. Worldwide
(not shown), the total commercial jet transport fleet is projected to nearly
double (from about 8,000 to 15,000 aircraft) over this same period of
time. The new deliveries represent tremendous export trade balance
benefits based on an economic value of nearly $600 billion (ref. 35).

Through the turn of the century, community noise level exposure
around most U.S. and European airports will decline steadily as an all-
Stage 3 aircraft fleet replace Stage 2 aircraft (fig. 23). Based on an
arbitrary 3 percent per annum growth in number of aircraft operations,
community exposure to "significant aircraft noise" will be reduced by
more than half (fig. 13) that in 1987 with an all-Stage 3 fleet by the year
2005. However, beyond this period, projected growth in air traffic will
tend to erode the community noise reduction benefit achieved by the Stage
2 phase out. Thus, the worldwide air transportation industry may be
approaching the crossroads where the Stage 3 fleet of aircraft has grown in
number (and may exceed) to that of the older, noisier Stage 2 fleet. If this
occurs, unpublished data by Douglas Aircraft Company indicate that the
world Stage 3 fleet noise level trend (fig. 24) could eventually rise above
Stage 2. As plans for retirement of the Stage 2 fleet are implemented, in
compliance with FAR 36 Stage 3 (ref. 29), industry should examine the
impact of future fleet growth. At the same time, research on aircraft noise
reduction should be underway to provide the long range technology
required and in anticipation of continued community pressure for quieter
airplanes and need for expanded airport capacity.

Progress in Noise Reduction: The first step towards aircraft noise
reduction was the introduction of the low by-pass turbofan engines in the
early 1960's; however, they did not have a significant impact on noise
reduction over earlier jet engines.

Between the mid-1960's and the early 1980's, there was a significant
effort under the direction of the FAA and NASA to control aircraft noise
along with industry and academia interaction. The basics behind current
technology used to control noise was generated during this period. The
NASA program funding support for aircraft noise reduction technologies
during this period is shown in figure 25. As time passed and the
environmental lobby became stronger and regulatory bodies (FAA and
ICAO) generated noise requirements and certification rules, emphasis on



design for low noise increased. When it became evident that industry could
manufacture subsonic transports that meet FAR 36 Stage 3, government-
sponsored noise reduction research was curtailed. The introduction of
advanced high bypass ratio (HBPR) engines, which power today's wide-
bodied Stage 3 aircraft, has improved the noise situation dramatically (fig.
26).

Impressive advances have been made in the reduction of engine noise
source levels, particularly by the engine manufacturers. Figure 27 shows
the variation in engine noise reduction resulting from improved
turbomachinery (fan, turbine, compressor) and jet (exhaust flow,
combustor) corrected to constant thrust (ref. 36). While the earlier very
low bypass ratio (less than 3) engines were dominated by jet noise, current
high bypass ratio (between 3 and 7) engines have nearly the same levels of
turbomachinery and jet noise. Expectations for engines with BPR's greater
than 8 are that advanced propfan noise levels will be approximately the
same as current engines, and ultrahigh bypass ratio (UHBPR) engines will
have low jet noise levels. Thus, it might be concluded that if, in the long
term, the noise level target should emerge to be much lower than the
current FAR 36 Stage 3 levels, it will possibly be achieved only through
further improvements in engine technology and treatment and by reduced
airframe noise.

Noise regulations are, to a great extent, established based on the
technical feasibility of achieving desired noise reduction targets within a
given time period. At future levels, aecrodynamic or self noise of the
airframe (direct function of weight and speed to the 6th power) will begin
to dominate over engine noise. Furthermore, there is no real
understanding as to what level of noise exposure will be acceptable in the
future to communities surrounding airports or the economic benefits of
reduced noise.

Areas For Noise Reduction Research

Airport Community Noise: The most important finding in the study of
reference 7 was that, in the long term, airport community noise is the
fundamental cause of lack of capacity in the U.S. National Airspace System
(NAS) and the world's air transportation system. It should not be
concluded that the airport noise problem will be solved totally by
compliance of Stage 3 aircraft. While the technology challenge may be
difficult to acquire, quieter aircraft will be needed to offset the adverse
effects of increases in operations and to reduce costly restrictions at certain

19



airports that are required for noise control. The research goals in this area
should be directed toward:
1. Reducing aircraft source noise

2. Moderating airport community annoyance and reaction

3. Minimizing aircraft noise impact trajectories and airport
community exposure

Aircraft Source Noise: The effort and magnitude of noise prediction
methods and reduction technology that is needed to approach compatibility
with anticipated community demands should include engine, airframe,
rotor, and fan generated noise sources. Current transport aircraft
(propeller and jets) as well as future advanced subsonic jumbo aircraft,
civil tilt rotors (CTR), and high-speed civil transports (HSCT) should be
considered. Concepts for active control of engine noise and novel
techniques for suppression of propeller and rotor noise should continue to
be developed. Development of improved prediction methods for airframe
noise, jet and core noise, unsteady fan aerodynamics, and its integration
with acoustic generation and propagation mechanisms should be continued.

There is a need to establish a reasonable set of international goals,
below the current Stage 3 limits, for future transport aircraft noise
acceptance and certification that are compatible for existing airports.

Moderating Annoyance and Reaction: Technology does not exist for
forecasting airport noise environments and to assess community annoyance
and reaction during times of new or significantly changing noise exposure.
Research should be directed toward psycho-acoustic response of airport
communities to both long- and short-term duration, level, and frequency of
noise exposure. Other factors that should be considered include individual
and community attitude toward the source of the noise, relationship
between existing background noise and intruding noise, and the amount by
which sound is attenuated from outside to inside of living and working
space and interferes with normal communications.

Quiet, economic air transport systems can result only from an
integrated effort by the aerodynamic, engine, and atrframe designer in
close coordination with the aircraft operator. Goals for the design of such
new aircraft need to be established. Therefore, special attention and
research should be given to low speed lift-to-drag ratio, maximum lift,
number and location of engines, thrust-to-weight ratio, noise reduction due
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to thrust cutback, higher bypass ratio, optimum engine design for thrust,
and required acoustic treatment.

Noise Abatement Flight Paths and Procedures: In order to meet airport
noise restrictions, aircraft are being operated using nonstandard takeoff
and landing procedures, and sometimes under strained safety margins that
often result in reduced productivity and increased noise in other
surrounding community areas. Research is needed to develop methods of
operating aircraft, with advanced flight control and guidance systems, on
various noise abatement trajectories for a single over-flight on a
community.

Research is needed to establish the overall noise and economic impact
of limiting the number of operations by commercial and cargo aircraft
types (which is difficult under present legal constraints) or using
derated-thrust takeoff procedures in an effort to meet airport noise limits.

AIR TRAFFIC CONTROL ISSUES

Over 100 major airports in three regions (Europe, Asia/Pacific, and
USA) around the world have congestion problems and capacity
enhancement that is becoming very urgent (ref. 37).

The Airport Association Council International (ACCI) has identified
several basic strategies for providing additional capacity (ref. 37) by:

1. upgrading or the addition of new airport terminals and runways
for independent arrival/departures under VFR and IFR,

2. improvements in airport automation and flight-systems
management of demand for aircraft and passenger services,

3. reducing current I[FR minimum separation distance requirement
for dependent parallel and longitudinal runways, and

4. development of multiple approach concepts to permit
simultaneous instrument approaches significantly reducing
differences between IFR and VFR capacity.

Essentially all of these improvements in the ATC system, either
directly or indirectly, involves reducing the separation criteria for safe



operation under precision flight path capability. To achieve this capability
with existing technology, there is a need to demonstrate their readiness for
application. Some of the enroute and terminal area improvements are
schematically illustrated in figure 28 along with definitions of technologies
in figure 29).

Facilities Upgrade: Internationally, planned major airport expansion
programs (refs. 9, 37, and 38), to meet forecast global market demands,
are expected to total about $10.8 billion as previously shown in figure 10.
These programs mainly include new terminals and runways. However, in
Germany, for example, political and legal challenges have caused many
delays and even cancellation of airport improvements (ref. 37). The new
Munich airport opening in May 1992, was 30 years after planning start and
could be their last. The final cost, including delay and environment impact
mitigation, was expected to reach around $2.655 billion.

In the U.S., the FAA, airport operators, airlines, and other aviation
industry representatives are co-sponsoring 24 individually located airport
capacity design teams to analyze and develop solutions for capacity
programs (ref. 3). These teams have developed more than 400 projects
that include new airports and new and extended runways. Large capacity
increases, under VFR and IFR conditions, can come from the addition of
new or extended runways that are properly placed to allow additional
independent arrival and departure traffic. Sixty-six of the top 100 U.S.
airports have proposed new runways or extensions. The total anticipated
cost of completing these new runways and extensions exceeds $6 billion
(ref. 3). However, many of the projects have faced local community
opposition who fear an increase in noise and other environmental
degradation from new or expanded facilities. For example, the new
Denver International Airport site (53-square miles) selection was in
June 1986, at an estimated construction cost of $2.5 billion (ref. 39) with a
projected operational date sometime in 1995,

Airport Automation: Currently, high construction costs and land use or
regulatory constraints often outweigh the benefits of increasing airport
capacity by expansion. Thus, in addition to global airport infrastructure
upgrades and expansion to increase capacity, the FAA has plans for an
Advanced Automation and Systems (AAS) integration services during the
next 10 years. These plans are expected to create a $22 billion global
market for industry to produce centralized computer-based automation and
systems management solutions to handle more aircraft and passengers (ref.
40). The FAA, for example, estimates that total facilities and equipment
funding needed for the years 1982 through 2000 is about $31 billion under
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its National Airspace System (NAS) Plan for modernization (refs. 41-42).
The FAA's Advanced Traffic Management System (ATMS) plan for
enhancing the ATC system focuses on using satellites for communication
both in the cockpit and on the ground (ref. 43). The integrated terminal
area and navigation systems are to be linked by data networks to central
control facilities that will increase efficiency of operations and safety (refs.
40-64). Some examples of these automated concepts include:

1. Runway Sequencing Unit (RSU)--to optimize runway use and
reduce air traffic controller workload.

2. Preflight identification system of passengers and baggage--to
improve security.

3. Tagging airport runways, vehicles, and employees with high
data-rate radar transponders--to improve controller display, track
location, or movement.

4. Integrated security data concepts--to detect, screen, and control
access of facilities.

5. Automated administration--to streamline billing, inventory, and
purchasing.

6. Gate management--to enhance scheduling and utilization.

7. Airport Surface Traffic Automation (ASTA)--to detect and alert
controllers and cockpit of collision.

8. Global Positioning System (GPS) or Global Navigation Satellite
System (GNSS)--primary means for en-route, terminal, and
transoceanic navigation.

9. Integrated GPS with Microwave Landing System (GPS/MLS) or
with Inertial Reference (GPS/IRU) guidance--to improve both
horizontal and vertical accuracy during Category 2 or 3
instrument landing.

10. Traffic-alert/Conflict Avoidance System (TCAS)--independent
backup to the ground-based conflict detection system allowing
flight crew participation in ATC operations and controller
monitoring.



11. Oceanic Display and Planning System (ODAPS) or Automatic
Dependent Surveillance (ADS)--allows aircraft to automatically
transmit their location and altitude from on-board GPS/GNSS
and/or IRU systems via data link.

12. Head-Up Display (HUD) with integrated Instrument Landing
System (ILS) or Enhanced Vision System (HUD/EVS)--synthetic
vision display during take off and landings and when weather
deteriorates.

13. Center Tracon Automation System (CTAS)--to integrate both
center and tracon automation for better sequencing of traffic on
any track and flow management.

To effectively accomplish such automated concepts will require
advancements in information technology systems and their application
(refs. 65-67). For example, the FAA is currently applying 83 percent of
the Department of Transportation's information technology budget to
improve efficiency and safety (ref. 65). This effort by the FAA is essential
for improved weather forecasting, preventing runway incursions, reducing
ATC aircraft delays, and enroute over ocean reporting. NASA estimates it
will spend about $1.85 billion on information technology in 1993--about
12.5 percent of its budget. The total federal budget in this area for 1993 is
about $25 billion of which $15.5 billion will go to civil agencies. While
some of the new systems were developed for the military and are
off-the-shelf products, there is an increasing demand for open systems with
network interoperability, software portability, and data interchange
(ref. 65).

Some indicated benefits from these new systems are significant.
Northwest Airlines estimates that using GNSS for en route navigation on its
747-400's could save more than $430,000 per aircraft in annual fuel costs
as a result of "shortcut” flights (ref. 62). United Airlines estimates that
about 5 percent of their operating cost is wasted for flights over the Pacific
due to extra fuel burn required for typical 30-minute delays, waiting to get
into crowded airspace on a route, or at an altitude that is optimum for
reaching their destination (ref. 54). Thus, the added option of ADS
position reports with GNSS should give the freedom to rapidly optimize
flight paths instead of following preselected tracks.

A Flight Safety Foundation study postulates that HUD's could have
prevented 31 percent of all civil aircraft accidents that resulted in total or
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major aircraft loss between 1959-1989 and 33 percent of the accidents that
occurred on takeoff (ref. 61).

Separation Between Aircraft: Reducing aircraft IFR separation standards
could have a significant impact on delay costs (ref. 68). Airport operators
have indicated that aircraft separation criteria (fig. 30) for vortex
considerations result in about a 15 percent reduction in airport capacity
that amount to millions of dollars per year in cost. One of the more
promising ways to improve the capacity of the ATC/Airport infrastructure
is to provide more inter-arrival paths and spacing of aircraft on approach
under IFR conditions (ref. 11). However, two major hurdles in the
reduction of longitudinal separations on approach are the alleviation and
avoidance of wake vortex hazards to following aircraft and runway
occupancy.

When the wake vortex problem was recognized nearly 20 years ago,
two efforts were undertaken. The FAA initiated a study of the vortex
problem with a view towards minimizing the effects of wake turbulence as
an impediment to air traffic flow without compromising safety. The study
(ref. 11) defined a window at the ILS middle marker and about 3,000 feet
from the runway threshold, beyond which the existence and duration of
vortices would no longer present a hazard to trailing aircraft. This
approach required the development of a wake vortex detection and
avoidance system that has been moderately successful in characterizing
wakes and development of meteorological ways to predict the presence and
duration of wake vortices. While such a system has been proven
technically feasible, it has not been operationally acceptable by some of the
users. Around the same time period, NASA concentrated on the mechanics
and causes of wake vortices and their research demonstrated the possibility
of accelerating vortex dissipation and decay through the use of flaps and
spoilers on heavy jets (ref. 11). These efforts have not reached the point
where either the manufacturers or the users have implemented such wake
vortex alleviation systems due to various aircraft performance penalties.

Reference 69 is an FAA advisory circular that indicates the hazards
of aircraft wake turbulence and recommends related operational
procedures. To allow sufficient time and distance for the safe dissipation
of a wake vortex, the FAA has classified aircraft into three categories
(heavy, large, and small) and specified that separation standards be used
between successive aircraft on final approach as shown in figure 30. Since
the initial intensity of the vortices varies directly with the amount of lift
being produced, the heavier the aircraft, the stronger the vortices. Thus,
the driving separation criteria becomes the heavy jet aircraft followed by a
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heavy jet (4 nmi) with an additional 1 and 2 nmi increase in distance
required for in-trail large and small aircraft, respectively (fig. 30). The
FAA further specifies that any aircraft taking off behind a heavy jet must
be separated by at least two minutes. Consequently, the addition of heavy
jets into the airport traffic mix increases the landing and takeoff intervals
as well as the time to vacate the landing runway. An example of the
average separation times (seconds) are shown in figure 31 for aircraft
takeoff and landings with other traffic mix of equal large and small aircraft
(ref. 11). From the results shown in figure 31, runway capacity has been
computed (ref. 11) for various percentages of heavy jets and takeoff-
landing rates in an equal mixture of large and small aircraft. The results
shown in figure 32 illustrate the possible capacity increase with no heavy
aircraft in the mix for a single runway.

The actual, achieved separations between aircraft may have a
variance compared to the minimum values shown in figures 30 and 31 due
to different skills of the pilots and controllers involved and the fact that no
control is exercised inside the final approach fix. An example of the
observed spacing recorded at O'Hare International Airport, and provided
by the Airline Pilots Association (ALPA), is shown in figure 33 on
runways approved for a 2.5 mile separation minima, under VFR with dry
runways. At the far left of figure 33, separations of less than 40 seconds
sometimes require the following aircraft to "go-around” to prevent two
aircraft from being on the runway at once. At the far right, the runway is
being underutilized between arrivals. For the case shown (fig. 33), the
acceptance rate is 42 aircraft per hour based on arrivals only. The results
indicate that precise control over the inter-arrival interval could peak the
distribution at about 60 seconds and subsequently improve the maximum
acceptance rate.

Depending on the degree of sophistication developed in TCAS and
related equipment, for example, it is possible to achieve very substantial
improvements in the spacing distribution and arrival rates as can be seen
from a typical "miles-in-trail" chart (fig. 34) provided by ALPA.
Considering the required spacing for different classes of aircraft (fig. 30),
a ground speed of 180 knots at a three nautical mile spacing on figure 34
results in a minimal 60 second interval between aircraft. A combination of
TCAS/FMS can be provided with displayed airspeed commands to be
maintained, position of both aircraft in a pair, and position of the runway
threshold. Thus, precise control of the interval may be maintained at the
runway without compromising the final approach speed, occupancy
margin, and throughput. As delays decrease and runway capacity
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increases, the potential benefit of this technology improvement can be
large.

Since the wake vortex problem continues to be a major constraint to
IFR capacity, and a detection and alleviation system has not been fully
developed and accepted, cooperative program planning is underway
between the FAA and NASA to provide the required technology. In
general, the program includes new separation criteria (vortex encounter
simulation and hazard validation), dynamic spacing methodology (vortex
decay modeling and airborne or ground sensors for detection), wake
alleviation and modification (high-lift design methods).

Both of these constraint issues will now be discussed in detail. In the
mid-1980's, the Massachusetts Institute of Technology (MIT) Flight
Transportation Laboratory conducted a study of the potential of advanced
technologies on the ATC capacity of high-density terminal areas (ref. 70).
The FAA recently initiated a study through the MITRE Corporation (ref.
11) to evaluate the potential increases in airport capacity through ATC
system improvements in the airport and terminal area. In the study,
runway configurations (single, dual, parallel), aircraft types, and demand
characteristics were defined. Parameters that may be changed from a
baseline as a result of some improvements in the ATC system were then
varied and the FAA Airfield Capacity Model used by the MITRE
Corporation to compute the increases in capacity under today's VFR or
IFR operations (ref. 11).

The four aircraft classes assumed (ref. 11) in the FAA Airfield
Capacity Model and parameter values representing today's VFR and IFR
operations are summarized in figures 35 (a) and (b), respectively. Today's
VFR and IFR capacities for three runways analyzed are shown in figures
36 (a) and (b), respectively, and represent baseline values from which
computations of potential capacity increases were made. A summary of the
effect on VFR and IFR capacity due to various reductions in the different
parameters and operations are shown in figures 37 (a) and (b),
respectively. In general, the results indicate that the largest percentage
gains in capacity are through reductions in inter-arrival time and
separations.

By setting the parameter values to be absolute minimums, an estimate
of the theoretical upper bound of capacity increases was determined by
MITRE (ref. 11). A more "realistic" upper bound on the potential for
capacity increases was also determined by setting the parameters to
intermediate reduced values. Figures 38 (a) and (b) show a comparison
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between the theoretical and future "realistic” upper bounds on capacity
increases under VFR and IFR operations, respectively. The results shown
are general and are based on ATC system improvements; actual capacity
increases at specific airports will vary due to local conditions and external
factors. "Realistic" estimates of the upper limit of VFR and IFR capacity
increases (fig. 38) are on the order of 25 and 78 percent, respectively,
depending on operation.

Figure 39 shows a summary of the estimates of potential increases
(depending on the baseline runway configuration) in airport capacity
through ATC systems improvements in the airport and terminal areas
generated in the study by MITRE (ref. 11). The results indicate that the
greatest increase comes from the addition of a new runway for independent
arrivals/departures under VFR and IFR that is between 33 to 100 percent.
The development of multiple approach concepts to permit simultaneous
instrument approaches would significantly reduce the differences between
IFR and VFR capacity that could result in a 44 to 100 percent increase in
IFR capacity. Reduction in diagonal separation minimal requirement from
2 to 1 nmi for independent parallel operations could increase capacity by
25 percent and in longitudinal from 3 to 2.5 nmi (with 1 nautical mile
reduction in other wake vortex separation rules) could increase capacity by
15 percent. Reduced variability in inter-arrival and runway occupancy
times would increase capacity by 18 percent for VFR and 16 percent for
IFR.

ALTERNATIVE AVIATION TRANSPORTATION SYSTEMS

More and more there seems to be an urgency to develop long-range
plans that incorporate advanced transportation technology for the nation.
These plans should include new or alternative forms of aircraft that would
allow existing and future airport infrastructure to be used more efficiently
(refs. 71-76). There are two types of aircraft that appear to offer promise
for increasing capacity. One is through fewer but substantially larger size
aircraft (refs. 71-73), and the second is aircraft with the capability of
operating on shorter runways (refs. 74-76). Increasing the seating capacity
of today's wide body jet aircraft by nearly a factor of two seems
technically and economically feasible but has not appeared on the market.
Such aircraft could be of significant benefit in terms of reducing runway
utilization and operations, but may increase passenger congestion at the
gates and in the terminal buildings. The real challenge may be that of



economic compatibility between aircraft and airport designs that achieve
the lowest system cost.

Recent surveys have shown that nearly half of all commercial flights
(predominantly regional airlines) arriving at the ten busiest U.S. airports
are from distances of less than 300 miles and typically occupy gates and
runways in the same flow of traffic as long-distance aircraft. Northeast
corridor studies conducted by Boeing (ref. 74) of the Kennedy, La Guardia
and Newark airports, for example, has shown that a civil tilt rotor (CTR)
system for short-haul operations could free up about 280 slots per day.
This could increase capacity at these three airports by about 18 million
passengers annually without additional runways or gates. A joint study by
NASA and FAA projects development of a $2 billion tilt rotor system and
urban vertiports on the East Coast by the year 2000 (ref. 75).

A comprehensive study (ref. 77) that included market and several
potential transportation systems for the California corridor of the year
2010, concluded that advanced aircraft concepts and high speed ground
transportation could meet the corridor needs. The nation's airport capacity
and overall efficiency of the transportation system are only partly
determined by infrastructure and how it is used. Aircraft characteristics,
mix, utilization, and the technology employed to control their movement is
an important part of the system performance. For example, extensive use
of large wide-body aircraft on heavily traveled routes would allow more
passengers to be carried without increasing the number of aircraft.
Aircraft capable of steep takeoff and landing might have a large impact on
capacity as short-haul feeders replacing conventional aircraft now used.

Tilt rotor technology has a long history that began in the 1950's with
the former National Advisory Committee for Aeronautics (NACA) and
Department of Defense (DOD) with supported research that included
advanced helicopters, tilt wings, tilt rotors, and direct jet lift. In 1989, the
California Department of Transportation began an effort to evaluate the
feasibility of tilt rotor aircraft to ease airport traffic congestion. In the
meantime, early stages of development both in the U.S. and Japan, indicate
the tilt rotor promises vertical lift performance of that for helicopters with
the speed, efficiency, and payload capabilities of turboprop aircraft. Its
main feature is two rotor wings attached to the fixed wing portion of the
vehicle that are rotated in flight from the vertical upright to horizontal
positions.

The commercial and economic potential for civil tilt rotors (CTR)
may be significant in regions surrounding most congested urban airports.



Creation of vertiports at various locations within a 150-mile radius of a
region's major airport could minimize delays, relieve congestion, reduce
commuting time, and increase mobility at a lower cost to travelers.
However, a CTR has unusual characteristics that raises the question of
being commercially viable and there are issues of certification (refs. 7, 12,
and 74).

SUMMARY

Information has been presented that supports the findings of a study
conducted by the Massachusetts Institute of Technology focusing on airport
and airspace capacity issues (ref. 7). That study found aircraft noise and
aircraft separation to be the major issues causing air transportation system
capacity problems. Material presented in this paper overviews the state-of-
the-art in aircraft noise technology and aircraft separation technology as it
affects capacity issues, and provides insight into directions for further
research.
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Economic Benefit of Metropolitan Area Airports
Economic
Annual Annual
Metro Area Activity  Eamings Jobs
($Million)  ($Million)

New York City 30,3127 9,747.2 405,045
Los Angeles 29,317.2 9,676.2 399,352
Chicago 23,189.9 7,7314 367,626
San Francison/Oakland 19,049.0 6,299.6 257,164
Dallas/Fort Worth 13,246.6 42379 211,164
Atlanta 10,915.1 3,786.4 169,932
Washington, D.C. 10,819.8 3,786.4 205,326
Miami 9,797.0 34216 179,325
Denver 8,782.8 3,040.8 153,346
Houston 9,449.2 3,006.4 154,776
Seattle 7,559.5 2,518.5 131,363
St. Louis 6,837.3 2,266.4 124,363
Phoenix 6,090.6 2,125.2 129,728
Detroit 5,666.6 2,063.8 101,289
Boston 5,271.8 1,912.3 90,633
Minneapolis/St. Paul 5,290.8 1,863.0 90,633
Kansas City 5,116.2 1,703.7 92,133
San Diego 4,831.5 1,872.7 67,133
Philadelphla 4,350.3 1,475.4 75,973
Pittsburgh 4,000.4 1,376.0 67,783
Ft. Lauderdale 2,990.3 1,011.8 57,365
Baltimore 29914 1,074.2 53,680
Cleveland 3,017.5 995.0 58,151
Salt Lake City 2,824.2 952.6 60,954
San Jose 2,668.5 864.1 37,439
Cincinnatti 2,305.6 776.7 42,818
New Orleans 1,705.3 528.5 30,958
Portland 1,619.7 548.9 35,985
Milwaukee 1,136.7 398.2 25,708
Buffalo 736.4 2419 9,760
TOTALS: 241,8906 80,8564 3,887,466
Source: Partnership for Improved Air Travel

Figure 1. Example of the economic impact of several metropolitan airports in 1989.
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